Flame Spray Pyrolysis Engineering of Nanosized Mullite-Bi2Fe4O9 and Perovskite-BiFeO3 as Highly Efficient Photocatalysts for O2 Production from H2O Splitting

Author:

Psathas Pavlos,Solakidou MariaORCID,Mantzanis AsteriosORCID,Deligiannakis YiannisORCID

Abstract

Bi-Fe oxides are stable materials with potential photocatalytic activity under solar light photons. So far, however the photocatalytic potential of pure-phase nanosized mullite-Bi2Fe4O9 has not been studied. Usually, synthesis of pure-phase nanosized mullite-Bi2Fe4O9 is hampered by co-formation with perovskite BiFeO3. Herein we demonstrate that pure-phase mullite-Bi2Fe4O9 nanoparticles prepared by Flame Spray Pyrolysis (FSP) technology are highly efficient O2 production photocatalysts, achieving >1500 μmol g−1h−1. This outperforms all -so far reported- O2 production Bi-Fe-O photocatalysts. We present an FSP-based process for production of a versatile Bi-Fe-O platform, that can be easily optimized to obtain 100% mullite-Bi2Fe4O9 or 100% perovskite-BiFeO3 or their heterojunctions. The phase-evolution of the Bi-Fe-O materials has been studied by XPS, Raman, and EPR spectroscopies. Short post-FSP annealing process impacts the photoactivity of the BiFeO3 and Bi2Fe4O9 in distinct ways. Fe2+ centers in BiFeO3 can improve dramatically its O2 production efficiency, while solid-melt formation in Bi2Fe4O9 is a limiting factor.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3