Author:
Wang Biao,Liu Qingwang,Fan Zhenzhong,Liang Ting,Tong Qilei,Fu Yuanfeng
Abstract
With the intensification of human activities, a large amount of oil and organic solvent waste has been created, resulting in serious ecological and environmental pollution. Therefore, how to balance environmental benefits and economic benefits control a large number of organic solvent and oil pollution is an urgent problem. To solve this problem, a highly efficient oil-water separation material was designed and prepared in this paper. Graphene oxide aerogels were synthesized by the Pickering emulsion and hydrothermal method, and then hydrophobically lipophilic polydimethylsiloxane (PDMS) reduced graphene oxide aerogel composites (PDMS/GA) were obtained by modification of PDMS. The surface functional groups, hydrophobicity, thermal stability, and micromorphology of the materials were tested by various characterization methods. Their properties were tested by an oil absorption test and repeated experiments. The oil absorption performance experiments and repeated performance experiments of PDMS/GA are reported. The number of oxy-gen-containing functional groups of the modified graphene oxide (GO) decreased, and the contact angle of water was 134.4°. The adsorption capacity of n-hexane was up to 18.5 times its own weight. The material has the advantages of being lightweight, easy to recover, good hydrophobicity and lipophilicity, and has the potential for large-scale applications in the field of oil-water separation.
Funder
Heilongjiang Province Natural Science Foundation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献