Simulation of Water and Salt Dynamics under Different Water-Saving Degrees Using the SAHYSMOD Model

Author:

Chang Xiaomin,Wang Shaoli,Gao Zhanyi,Chen HaoruiORCID,Guan Xiaoyan

Abstract

Water shortage and soil salinization are the main issues threatening the sustainable development of agriculture and ecology in the Hetao Irrigation District (HID). The application of water-saving practices is required for sustainable agricultural development. However, further study is required to assess the effects of these practices on water and salt dynamics in the long term. In this study, the impacts of different water-saving practices on water and salt dynamics were investigated in the HID, Northwest China. The SAHYSMOD (integrated spatial agro-hydro-salinity model) was used to analyze the water and salt dynamics for different water-saving irrigation scenarios. The results indicate that the SAHYSMOD model shows a good performance after successful calibration (2007–2012) and validation (2013–2016). The soil salinity of cultivated land in the middle and upper reaches of the irrigation district decreased slightly, while that in the lower reaches increased significantly over the next 10 years under current irrigation and drainage conditions. It is predicted that if the amount of water diverted is reduced by up to 15%, the maximum water-saving volume could reach 650 million m3 yr–1. For the fixed reduction rate of total water diversion, the prioritized measure should be given to reduce the amount of field irrigation quota, and then to improve the water efficiency of the canal system. Although a certain amount of water can be saved through various measures, the effect of water saving in the irrigation district should be analyzed comprehensively, and the optimal water management scheme should be determined by considering the ecological water requirement in the HID.

Funder

China Postdoctoral Science Foundation funded project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3