Author:
Liu Leisong,Lu Yuantian,Zhuang Xin,Zhang Qunying,Fang Guangyou
Abstract
This paper analyzes the noise sources in photoelectric detection circuits with several low-noise operational amplifiers cores. The fabricated circuits are low-noise pre-amplifiers that are used for optically pumped magnetometers. In the proposed circuits, the noise levels of equivalent output voltage are calculated, and the results are in accordance with measurements. With a cooperation of several operational amplifiers, we select LT1028 from linear technologies as the core for our detection circuit, which has an output signal-to-noise ratio of more than 2 × 105 up to the frequency of 100 kHz. By analyzing the individual noise sources in the detection circuit, the dominant noise source is confirmed as the photocurrent shot noise below 200 kHz. Beyond this frequency, the voltage noise source in the operational amplifier dominates. Besides, the lamp power, the radio frequency (RF) power, the temperature variations, and their influences on the sensitivity are studied and optimized. Finally, an optically pumped magnetometer with cesium head is established, showing an intrinsic sensitivity of 85 fT/√Hz. This sensitivity is realized under a geomagnetic magnetic field strength of 53 μT.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献