Curated Database and Preliminary AutoML QSAR Model for 5-HT1A Receptor

Author:

Czub Natalia,Pacławski AdamORCID,Szlęk Jakub,Mendyk AleksanderORCID

Abstract

Introduction of a new drug to the market is a challenging and resource-consuming process. Predictive models developed with the use of artificial intelligence could be the solution to the growing need for an efficient tool which brings practical and knowledge benefits, but requires a large amount of high-quality data. The aim of our project was to develop quantitative structure–activity relationship (QSAR) model predicting serotonergic activity toward the 5-HT1A receptor on the basis of a created database. The dataset was obtained using ZINC and ChEMBL databases. It contained 9440 unique compounds, yielding the largest available database of 5-HT1A ligands with specified pKi value to date. Furthermore, the predictive model was developed using automated machine learning (AutoML) methods. According to the 10-fold cross-validation (10-CV) testing procedure, the root-mean-squared error (RMSE) was 0.5437, and the coefficient of determination (R2) was 0.74. Moreover, the Shapley Additive Explanations method (SHAP) was applied to assess a more in-depth understanding of the influence of variables on the model’s predictions. According to to the problem definition, the developed model can efficiently predict the affinity value for new molecules toward the 5-HT1A receptor on the basis of their structure encoded in the form of molecular descriptors. Usage of this model in screening processes can significantly improve the process of discovery of new drugs in the field of mental diseases and anticancer therapy.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3