Synthesis and Evaluation of Poly(3-hydroxypropyl Ethylene-imine) and Its Blends with Chitosan Forming Novel Elastic Films for Delivery of Haloperidol

Author:

Soradech SitthiphongORCID,Kengkwasingh Pattarawadee,Williams Adrian C.,Khutoryanskiy Vitaliy V.ORCID

Abstract

This study aimed to develop novel elastic films based on chitosan and poly(3-hydroxypropyl ethyleneimine) or P3HPEI for the rapid delivery of haloperidol. P3HPEI was synthesized using a nucleophilic substitution reaction of linear polyethyleneimine (L-PEI) with 3-bromo-1-propanol. 1H-NMR and FTIR spectroscopies confirmed the successful conversion of L-PEI to P3HPEI, and the physicochemical properties and cytotoxicity of P3HPEI were investigated. P3HPEI had good solubility in water and was significantly less toxic than the parent L-PEI. It had a low glass transition temperature (Tg = −38.6 °C). Consequently, this new polymer was blended with chitosan to improve mechanical properties, and these materials were used for the rapid delivery of haloperidol. Films were prepared by casting from aqueous solutions and then evaporating the solvent. The miscibility of polymers, mechanical properties of blend films, and drug release profiles from these formulations were investigated. The blends of chitosan and P3HPEI were miscible in the solid state and the inclusion of P3HPEI improved the mechanical properties of the films, producing more elastic materials. A 35:65 (%w/w) blend of chitosan–P3HPEI provided the optimum glass transition temperature for transmucosal drug delivery and so was selected for further investigation with haloperidol, which was chosen as a model hydrophobic drug. Microscopic and X-ray diffractogram (XRD) data indicated that the solubility of the drug in the films was ~1.5%. The inclusion of the hydrophilic polymer P3HPEI allowed rapid drug release within ~30 min, after which films disintegrated, demonstrating that the formulations are suitable for application to mucosal surfaces, such as in buccal drug delivery. Higher release with increasing drug loading allows flexible dosing. Blending P3HPEI with chitosan thus allows the selection of desirable physicochemical and mechanical properties of the films for delivery of haloperidol as a poorly water-soluble drug.

Funder

Thailand Institute of Scientific and Technological Research, Ministry of Higher Education, Science, Research and Innovation, Thailand

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3