Fused Deposition Modeling (FDM) 3D Printing of the Thermo-Sensitive Peptidomimetic Drug Enalapril Maleate

Author:

Hoffmann Lena,Breitkreutz JörgORCID,Quodbach JulianORCID

Abstract

Fused deposition modeling (FDM) 3D printing was used to produce 3D printed tablets with the thermo-sensitive model peptidomimetic drug enalapril maleate (EM). Two different formulations were prepared to investigate the degradation of enalapril maleate during the FDM 3D printing process. Soluplus® and Eudragit® E PO were chosen as polymers. After hot-melt extrusion (HME) and FDM 3D printing, both formulations were characterised regarding their solid-state properties using DSC and XRD. The degradation of the drug was analysed by determination of the content in the extrudates and 3D printed tablets, and dissolution was assessed. Various approaches have been attempted to prevent degradation of enalapril maleate, including utilization of a larger nozzle diameter and higher printing speeds to reduce heat exposition. None of these approaches were successful in preventing drug degradation. However, significant differences in the amount of degradation between the two formulations with different polymers could be observed. Thus, the FDM 3D printing process was not feasible without any degradation for the thermo-sensitive drug enalapril maleate. A maximum of 85.55 ± 1.48% enalapril was recovered in Eudragit® E PO tablets printed with a 0.4 mm nozzle at a temperature of 180 °C and with a speed of 30 mm/s.

Funder

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Pharmaceutical Science

Reference27 articles.

1. Personalized medicine—Concepts, technologies, and applications in inflammatory skin diseases;Apmis,2019

2. Scenarios for 3D printing of personalized medicines—A case study;Explor. Res. Clin. Soc. Pharm.,2021

3. Recent innovations in 3D-printed personalized medicines: An interview with Abdul Basit;J. 3D Print. Med.,2020

4. 3D Printing as a Promising Tool in Personalized Medicine;AAPS PharmSciTech,2021

5. A critical review on 3D-printed dosage forms;Curr. Pharm.,2018

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3