3D-Powder-Bed-Printed Pharmaceutical Drug Product Tablets for Use in Clinical Studies

Author:

van den Heuvel Korinde A.ORCID,Berardi Alberto,Buijvoets Lisa B.ORCID,Dickhoff Bastiaan H. J.ORCID

Abstract

Printing of phase 1 and 2a clinical trial formulations represents an interesting industrial application of powder bed printing. Formulations for clinical trials are challenging because they should enable flexible changes in the strength of the dosage form by varying the active pharmaceutical ingredient (API) percentage and tablet mass. The aim of this study was to investigate how powder bed 3D printing can be used for development of flexible platforms for clinical trials, suitable for both hydrophilic and hydrophobic APIs, using only conventional tableting excipients. A series of pre-formulation and formulation studies were performed to develop two platform formulations for clinical trials using acetaminophen and diclofenac sodium as model compounds and lactose and starch as excipients. The results showed that the type of starch used as the formulation binder must be optimized based on the type of API. Moreover, powder blend flow and liquid penetration ability proved to be critical material attributes (CMAs) that need to be controlled, particularly at high drug loading. Optimization of these CMAs was performed by selecting the appropriate particle size of the API or by addition of silica. A critical process parameter that had to be controlled for production of tablets of good quality was the quantity of the printing ink. After optimization of both the formulation and process parameters, two platform formulations, that is, one for each API, were successfully developed. Within each platform, drug loading from 5 up to 50% w/w and tablet mass from 50 to 500 mg were achieved. All 3D-printed tablets could be produced at tensile strength above 0.2 MPa, and most tablets could enable immediate release (i.e., >80% w/w within 30 min).

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of 3D printing on the design and development of pharmaceutical oral dosage forms;Journal of Controlled Release;2024-09

2. 3D powder bed tablet printing: From a R&D printer to a scalable GMP printer;Journal of Drug Delivery Science and Technology;2023-09

3. Advancing non-destructive analysis of 3D printed medicines;Trends in Pharmacological Sciences;2023-06

4. Inkjet and Binder Jet Printing in Pharmaceuticals;Additive Manufacturing in Pharmaceuticals;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3