Verification of P-Glycoprotein Function at the Dermal Barrier in Diffusion Cells and Dynamic “Skin-On-A-Chip” Microfluidic Device

Author:

Bajza Ágnes,Kocsis Dorottya,Berezvai Orsolya,Laki András József,Lukács Bence,Imre Tímea,Iván KristófORCID,Szabó PálORCID,Erdő Franciska

Abstract

The efficacy of transdermal absorption of drugs and the irritation or corrosion potential of topically applied formulations are important areas of investigation in pharmaceutical, military and cosmetic research. The aim of the present experiments is to test the role of P-glycoprotein in dermal drug delivery in various ex vivo and in vitro platforms, including a novel microchip technology developed by Pázmány Péter Catholic University. A further question is whether the freezing of excised skin and age have any influence on P-glycoprotein-mediated dermal drug absorption. Two P-glycoprotein substrate model drugs (quinidine and erythromycin) were investigated via topical administration in diffusion cells, a skin-on-a-chip device and transdermal microdialysis in rat skin. The transdermal absorption of both model drugs was reduced by P-glycoprotein inhibition, and both aging and freezing increased the permeability of the tissues. Based on our findings, it is concluded that the process of freezing leads to reduced function of efflux transporters, and increases the porosity of skin. P-glycoprotein has an absorptive orientation in the skin, and topical inhibitors can modify its action. The defensive role of the skin seems to be diminished in aged individuals, partly due to reduced thickness of the dermis. The novel microfluidic microchip seems to be an appropriate tool to investigate dermal drug delivery.

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3