Development and In Vivo Evaluation of a Novel Vitamin D3 Oral Spray Delivery System

Author:

Yan Xin1,Lu Enhao1,Song Zhuo2,Wu Yuexing2,Sha Xianyi13

Affiliation:

1. Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China

2. Shanghai JiaLanHai NanoTechnology Group Co., Ltd., Shanghai 200335, China

3. The Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China

Abstract

Developing drugs that are highly selective to host tissues but are the least toxic remains one of the most difficult challenges in cancer treatment. Recent studies have shown that tumor cells from a variety of sources can express vitamin D3 receptors and that the response to vitamin D3 and its analogs is prone to growth arrest and cell death. However, conventional vitamin D3 drug formulations lack dose control and cannot target specific cells or tissues. The aim of this study was to prepare vitamin D3 nanospray for inhalation delivery route. This study evaluated the physical properties of the formulation (particle size distribution and biological stability), the total number of sprays per bottle, the spray volume per spray, and the loading variance of the spray. The optimized vitamin D3 spray formula is easy to spray, has fewer drips, and has a fast drying time. It can be stored for 3 months at 37 ± 2 °C temperature, 75 ± 5% relative humidity, and away from light, and can maintain biological stability. This study showed that compared with traditional nasal sprays, the spray has a larger fan angle (82.1 degrees) and beam width (104.88 mm), more symmetrical spray on both sides of the spray column, a faster coverage of the administration site, and a wider range, which is suitable for inhalation delivery routes.

Funder

Biomedical Technology Support Project of the Shanghai Municipal Science and Technology Commission

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3