Polyphenolic Nanomedicine Regulating Mitochondria REDOX for Innovative Cancer Treatment

Author:

Yang Mingchuan1,He Yufeng1,Ni Qingqing2,Zhou Mengxue1,Chen Hongping1,Li Guangyun1,Yu Jizhong3,Wu Ximing4,Zhang Xiangchun1ORCID

Affiliation:

1. Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China

2. Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China

3. Hangzhou Academy of Agricultural Sciences, Hangzhou 310008, China

4. Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, School of Biological and Food Engineering, Hefei Normal University, Hefei 230601, China

Abstract

Cancer remains a highly lethal disease globally. The approach centered on REDOX-targeted mitochondrial therapy for cancer has displayed notable benefits. Plant polyphenols exhibit strong REDOX and anticancer properties, particularly by affecting mitochondrial function, yet their structural instability and low bioavailability hinder their utility. To overcome this challenge, researchers have utilized the inherent physical and chemical characteristics of polyphenols and their derivatives to develop innovative nanomedicines for targeting mitochondria. This review examines the construction strategies and anticancer properties of various types of polyphenol-based biological nanomedicine for regulating mitochondria in recent years, such as polyphenol self-assembly, metal–phenol network, polyphenol–protein, polyphenol–hydrogel, polyphenol–chitosan, and polyphenol–liposome. These polyphenolic nanomedicines incorporate enhanced features such as improved solubility, efficient photothermal conversion capability, regulation of mitochondrial homeostasis, and ion adsorption through diverse construction strategies. The focus is on how these polyphenol nanomedicines promote ROS production and their mechanism of targeting mitochondria to inhibit cancer. Furthermore, it delves into the benefits and applications of polyphenolic nanomedicine in cancer treatments, as well as the challenges for future research.

Funder

Key Research and Development Program of Zhejiang

National Natural Science Foundation of China

Anhui Provincial Natural Science Foundation

Innovative Program of Chinese Academy of Agricultural Sciences

Agriculture Research System of China of MOF and MARA

Publisher

MDPI AG

Reference134 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3