Addressing the ADME Challenges of Compound Loss in a PDMS-Based Gut-on-Chip Microphysiological System

Author:

Carius Patrick1ORCID,Weinelt Ferdinand Anton1ORCID,Cantow Chris1,Holstein Markus1,Teitelbaum Aaron M.1,Cui Yunhai1ORCID

Affiliation:

1. Department Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach, Germany

Abstract

Microphysiological systems (MPSs) are promising in vitro technologies for physiologically relevant predictions of the human absorption, distribution, metabolism, and excretion (ADME) properties of drug candidates. However, polydimethylsiloxane (PDMS), a common material used in MPSs, can both adsorb and absorb small molecules, thereby compromising experimental results. This study aimed to evaluate the feasibility of using the PDMS-based Emulate gut-on-chip to determine the first-pass intestinal drug clearance. In cell-free PDMS organ-chips, we assessed the loss of 17 drugs, among which testosterone was selected as a model compound for further study based on its substantial ad- and absorptions to organ chips and its extensive first-pass intestinal metabolism with well-characterized metabolites. A gut-on-chip model consisting of epithelial Caco-2 cells and primary human umbilical vein endothelial cells (HUVECs) was established. The barrier integrity of the model was tested with reference compounds and inhibition of drug efflux. Concentration–time profiles of testosterone were measured in cell-free organ chips and in gut-on-chip models. A method to deduce the metabolic clearance was provided. Our results demonstrate that metabolic clearance can be determined with PDMS-based MPSs despite substantial compound loss to the chip. Overall, this study offers a practical protocol to experimentally assess ADME properties in PDMS-based MPSs.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3