LL-37-Coupled Porous Composite Scaffold for the Treatment of Infected Segmental Bone Defect

Author:

Li Xialin,Huang Xingyu,Li Long,Wu Jiayi,Yi Weihong,Lai Yuxiao,Qin Lei

Abstract

Increased multiantibiotic-resistant bacteria means that infected bone defects remain a significant challenge to clinics. Great interest has emerged in the use of non-antibiotic antimicrobials to reduce the rate of multiantibiotic-resistant bacterial infection and facilitate bone regeneration. The cationic antimicrobial peptide LL-37 is the sole human cathelicidin and has shown nonspecific activity against a broad spectrum of microorganisms. In this study, we fabricated the poly(lactic-co-glycolic acid)/β-calcium phosphate/peptide LL-37 (PLGA/TCP/LL-37, PTL) scaffold with low-temperature 3D-printing technology for the treatment of infected segmental bone defects. The prepared scaffolds were divided into three groups: a high LL-37 concentration group (PTHL), low LL-37 concentration group (PTLL) and blank control group (PT). The cytocompatibility and antimicrobial activity of the engineered scaffolds were tested in vitro, and their osteogenesis properties were assessed in vivo in a rat infected bone defect model. We found the fabricated PTL scaffold had a well-designed porous structure that could support a steady and prolonged LL-37 release. Furthermore, the PTHL group showed strong antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) without any inhibition of the proliferation or alkaline phosphatase activity of rat bone marrow mesenchymal stem cells (BMSCs) in vitro. In addition, the infected femoral defects implanted with PTHL group displayed new bone formation in four weeks without any evidence of residual bacteria, which showed similar antibacterial outcomes to the vancomycin and cancellous bone mixture group. In conclusion, the PTHL composite scaffold is a promising non-antibiotic antimicrobial graft with good biodegradability, biocompatibility, and osteogenic capability for infected bone defects.

Funder

Natural Science Foundation of Guangdong Province

Nanshan District Health Bureau on 2020 Technology Project

Internal Project Grants of Huazhong University of Science and Technology Union Shenzhen Hospital

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3