Human Salivary Histatin-1 Attenuates Osteoarthritis through Promoting M1/M2 Macrophage Transition

Author:

Wu Antong12,Pathak Janak Lal.12ORCID,Li Xingyang12,Cao Wei12,Zhong Wenchao12,Zhu Mingjing12,Wu Qiuyu2,Chen Wanyi12,Han Qiao12,Jiang Siqing12,Hei Yuzhuo12,Zhang Ziyi12,Wu Gang34ORCID,Zhang Qingbin12

Affiliation:

1. Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510182, China

2. Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China

3. Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), 1081 LA Amsterdam, The Netherlands

4. Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 LA Amsterdam, The Netherlands

Abstract

Osteoarthritis (OA) is an inflammation-driven degenerative joint disease. Human salivary peptide histatin-1 (Hst1) shows pro-healing and immunomodulatory properties. but its role in OA treatment is not fully understood. In this study, we investigated the efficacy of Hst1 in the inflammation modulation-mediated attenuation of bone and cartilage damage in OA. Hst1 was intra-articularly injected into a rat knee joint in a monosodium iodoacetate (MIA)-induced OA model. Micro-CT, histological, and immunohistochemical analyses showed that Hst1 significantly attenuates cartilage and bone deconstruction as well as macrophage infiltration. In the lipopolysaccharide-induced air pouch model, Hst1 significantly reduced inflammatory cell infiltration and inflammation. Enzyme-linked immunosorbent assay (ELISA), RT-qPCR, Western blot, immunofluorescence staining, flow cytometry (FCM), metabolic energy analysis, and high-throughput gene sequencing showed that Hst1 significantly triggers M1-to-M2 macrophage phenotype switching, during which it significantly downregulated nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinases (MAPK) signaling pathways. Furthermore, cell migration assay, Alcian blue, Safranin O staining, RT-qPCR, Western blot, and FCM showed that Hst1 not only attenuates M1-macrophage-CM-induced apoptosis and matrix metalloproteinase expression in chondrogenic cells, but it also restores their metabolic activity, migration, and chondrogenic differentiation. These findings show the promising potential of Hst1 in treating OA.

Funder

National Natural Science Foundation of China

Guangzhou Science and Technology Key R&D Program Fund

Guangzhou Health Commission General Project

High-level university construction funding of Guangzhou Medical University

Medical Science and Technology Research Foundation of Guangdong Province

2019 Medical Teaching Reform Project of Guangzhou Education Bureau

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3