Constructing ROS-Responsive Supramolecular Gel with Innate Antibacterial Properties

Author:

Zheng Fen1,Du Wei2,Yang Minggang3,Liu Kaige1,Zhang Shanming1,Xu Long1ORCID,Wen Yong2

Affiliation:

1. School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China

2. Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou 510515, China

3. Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Abstract

Bacterial infections, especially antibiotic-resistant bacterial infections, pose a significant threat to human health. Supramolecular gel with innate antibacterial properties is an advanced material for the treatment of bacterial infections, which have attracted great attention. Herein, a reactive oxygen species (ROS)-responsive innate antibacterial supramolecular gel is developed by a bottom-up approach based on phenylalanine and hydrazide with innate antibacterial properties. The structure of gelators and intermediate products was characterized by proton nuclear magnetic resonance (1H NMR) and a high-resolution mass spectrum (HRMS). The results of 1H NMR and the Fourier transform infrared spectrum (FT–IR) experiment disclosed that hydrogen bonding and the π–π stacking force are the important self-assembly driving forces of gelators. The microstructure and mechanical properties of gel were studied by Scanning electron microscope (SEM) and Rheometer, respectively. An in vitro degradation experiment proved that the gelator has ROS-responsive degradation properties. The in vitro drug release experiment further manifested that antibiotic-loaded gel has ROS-responsive drug-release performances. An in vitro cytotoxicity experiment showed that the supramolecular gel has good biocompatibility and could promote cell proliferation. The in vitro antibacterial experiment proved that the supramolecular gel has excellent inherent antibacterial properties, and the antibacterial rate against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was 98.6% and 99.1%, respectively. The ROS-responsive supramolecular gel as a novel antibacterial agent has great application prospects in treating antibiotic-resistant bacterial-infected wounds and preventing the development of bacterial resistance.

Funder

National Nature Science Foundation of China

Natural Science Foundation of Zhejiang Province

Nature Science Foundation of Ning Bo

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3