The Trimeric Artesunate Analog TF27, a Broadly Acting Anti-Infective Model Drug, Exerts Pronounced Anti-SARS-CoV-2 Activity Spanning Variants and Host Cell Types

Author:

Hahn FriedrichORCID,Wangen Christina,Häge Sigrun,Herrmann Lars,Herrmann Alexandra,Tsogoeva Svetlana B.ORCID,Marschall Manfred

Abstract

Starting in 2019, the spread of respiratory syndrome coronavirus 2 (SARS-CoV-2) and the associated pandemic of the corona virus disease (COVID-19) has led to enormous efforts in the development of medical countermeasures. Although innovative vaccines have scaled back the number of severe COVID cases, the emergence of the omicron variant (B.1.1.529) illustrates how vaccine development struggles to keep pace with viral evolution. On the other hand, while the recently approved antiviral drugs remdesivir, molnupiravir, and Paxlovid are considered as broadly acting anti-coronavirus therapeutics, only molnupiravir and Paxlovid are orally available and none of these drugs are recommended for prophylactic use. Thus, so far unexploited small molecules, targeting strategies, and antiviral mechanisms are urgently needed to address issues in the current pandemic and in putative future outbreaks of newly emerging variants of concern. Recently, we and others have described the anti-infective potential and particularly the pronounced antiviral activity of artesunate and related compounds of the trioxane/sesquiterpene class. In particular, the trimeric derivative TF27 demonstrated strong anti-cytomegalovirus activity at nanomolar concentrations in vitro as well as in vivo efficacy after oral administration in therapeutic and even prophylactic treatment settings. Here, we extended this analysis by evaluating TF27 for its anti-SARS-CoV-2 potential. Our main findings are as follows: (i) compound TF27 exerted strong anti-SARS-CoV-2 activity in vitro (EC50 = 0.46 ± 0.20 µM), (ii) antiviral activity was clearly distinct from the induction of cytotoxicity, (iii) pretreatment with TF27 prevented virus replication in cultured cells, (iv) antiviral activity has likewise been demonstrated in Calu-3 human lung and Caco-2 human colon cells infected with wild-type, delta, or omicron SARS-CoV-2, respectively, and (v) analysis of TF27 combination treatments has revealed synergistic interaction with GC376, but antagonistic interaction with EIDD-1931. Combined, the data demonstrated the pronounced anti-SARS-CoV-2 activity of TF27 and thus highlight the potential of trioxane compounds for further pharmacologic development towards improved options for COVID-specific medication.

Funder

Bayerische Forschungsstiftung

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3