Sustained and Targeted Delivery of Self-Assembled Doxorubicin Nonapeptides Using pH-Responsive Hydrogels for Osteosarcoma Chemotherapy

Author:

Zhu Jie1,Gao Rui2,Wang Zhongshi2,Cheng Zhiming3,Xu Zhonghua3,Liu Zaiyang3,Wu Yiqun2,Wang Min3,Zhang Yuan3ORCID

Affiliation:

1. Department of Neurology, Daping Hospital, Army Medical University, Chongqing 400038, China

2. State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China

3. Joint Disease & Sport Medicine Center, Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400038, China

Abstract

While chemotherapeutic agents have particularly potent effects in many types of cancer, their clinical applications are still far from satisfactory due to off-target drug exposure, chemotherapy resistance, and adverse effects, especially in osteosarcoma. Therefore, it is clinically promising to construct a novel tumor-targeted drug delivery system to control drug release and alleviate side effects. In this study, a pH-responsive nonapeptide hydrogel was designed and fabricated for the tumor-targeted drug delivery of doxorubicin (DOX). Using a solid-phase synthesis method, a nonapeptide named P1 peptide that is structurally akin to surfactant-like peptides (SLPs) due to its hydrophobic tail and hydrophilic head was synthesized. The physicochemical properties of the P1 hydrogel were characterized via encapsulation capacity, transmission electron microscopy (TEM), circular dichroism (CD), zeta potential, rheological analysis, and drug release studies. We also used in vitro and in vivo experiments to investigate the cytocompatibility and tumor inhibitory efficacy of the drug-loaded peptide hydrogel. The P1 peptide could self-assemble into biodegradable hydrogels under neutral conditions, and the prepared drug-loaded hydrogels exhibited good injectability and biocompatibility. The in vitro drug release studies showed that DOX-P1 hydrogels had high sensitivity to acidic conditions (pH 5.8 versus 7.4, up to 3.6-fold). Furthermore, the in vivo experiments demonstrated that the DOX-P1 hydrogel could not only amplify the therapeutic effect but also increase DOX accumulation at the tumor site. Our study proposes a promising approach to designing a pH-responsive hydrogel with controlled doxorubicin-release action based on self-assembled nonapeptides for targeted chemotherapy.

Funder

Innovation Capability Enhancement Project of Army Medical University

Technological Innovation and Development of Chongqing

National and Chongqing continuing medical education programs

Publisher

MDPI AG

Subject

Pharmaceutical Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3