Impact of Gas Flow and Humidity on Trans-Nasal Aerosol Deposition via Nasal Cannula in Adults: A Randomized Cross-Over Study

Author:

Alcoforado Luciana,Ari ArzuORCID,Barcelar Jacqueline,Brandão Simone,Fink James,de Andrade Armele

Abstract

Background: Trans-nasal pulmonary aerosol delivery using high flow nasal cannula (HFNC) devices is described with the administration of high gas flows exceeding patient inspiratory flow (HF) and with lower flows (LF). The aim of this pilot clinical trial was to compare deposition and distribution of radiolabeled aerosol via nasal cannula in healthy adults across three rates of gas flow delivered with active heated humidification, and to further identify the impact of aerosol administration without heated humidity. Methods: Twenty-three (23) healthy adults (16F) were randomized to receive aerosol with active heated humidification or unheated oxygen at gas flows of 10 L/min (n = 8), 30 L/min (n = 7), or 50 L/min (n = 8). Diethylenetriaminepentaacetic acid labeled with 1 millicurie (37 MBq) of Technetium-99m (DTPA-Tc99m) was mixed with NaCl to a fill volume of 1 mL, and administered via mesh nebulizer placed at the inlet of the humidifier. Radioactivity counts were performed using a gamma camera and the regions of interest (ROIs) were delimited with counts from the lungs, upper airways, stomach, nebulizer, circuit, and expiratory filter. A mass balance was calculated and each compartment was expressed as a percentage of the total. Results: Lung deposition (mean ± SD) with heated humidified gas was greater at 10 L/min than 30 L/min or 50 L/min (17.2 ± 6.8%, 5.71 ± 2.04%, and 3.46 ± 1.24%, respectively; p = 0.0001). Using unheated carrier gas, a lung dose of aerosol was similar to the active heated humidification condition at 10 L/min, but greater at 30 and 50 L/min (p = 0.011). Administered gas flow and lung deposition were negatively correlated (r = −0.880, p < 0.001). Conclusions: Both flow and active heated humidity inversely impact aerosol delivery through HFNC. Nevertheless, aerosol administration across the range of commonly used flows can provide measurable levels of lung deposition in healthy adult subjects (NCT 02519465).

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3