Solid Dispersions Incorporated into PVP Films for the Controlled Release of Trans-Resveratrol: Development, Physicochemical and In Vitro Characterizations and In Vivo Cutaneous Anti-Inflammatory Evaluation

Author:

Riccio Bruno Vincenzo FiodORCID,Nascimento André Luiz Carneiro Soares doORCID,Meneguin Andréia Bagliotti,Rodero Camila FernandaORCID,Santos Kaio PiniORCID,Sábio Rafael MiguelORCID,Annunzio Sarah Raquel de,Fontana Carla RaquelORCID,Barud Hernane da Silva,Ferrari Priscileila Colerato,Chorilli MarlusORCID

Abstract

Trans-resveratrol can promote various dermatological effects. However, its high crystallinity decreases its solubility and bioavailability. Therefore, solid dispersions have been developed to promote its amorphization; even so, they present as powders, making cutaneous controlled drug delivery unfeasible and an alternative necessary for their incorporation into other systems. Thus, polyvinylpyrrolidone (PVP) films were chosen with the aim of developing a controlled delivery system to treat inflammation and bacterial infections associated with atopic dermatitis. Four formulations were developed: two with solid dispersions (and trans-resveratrol) and two as controls. The films presented with uniformity, as well as bioadhesive and good barrier properties. X-ray diffraction showed that trans-resveratrol did not recrystallize. Fourier-transform infrared spectroscopy (FT-IR) and thermal analysis evidenced good chemical compatibilities. The in vitro release assay showed release values from 82.27 ± 2.60 to 92.81 ± 2.50% (being a prolonged release). In the in vitro retention assay, trans-resveratrol was retained in the skin, over 24 h, from 42.88 to 53.28%. They also had low cytotoxicity over fibroblasts. The in vivo assay showed a reduction in inflammation up to 66%. The films also avoided Staphylococcus aureus’s growth, which worsens atopic dermatitis. According to the results, the developed system is suitable for drug delivery and capable of simultaneously treating inflammation and infections related to atopic dermatitis.

Funder

São Paulo Research Foundation

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3