Dissolution from Ethylene Vinyl Acetate Copolymer Long-Acting Implants: Effect of Model Active Ingredient Size and Shape

Author:

Gohn Anne M.ORCID,Nolte Amy,Ravotti Ethan,Forster Seth P.ORCID,Giles Morgan,Rudd Nathan,Mendis Gamini

Abstract

In recent pharmaceutical applications, an active pharmaceutical ingredient (API) can be mixed with a polymer material to yield a composite long-acting drug-delivery device. These devices boast higher patient compliance, localized drug delivery, and lower dosage concentrations, which can increase patient safety. As a laboratory-safe option, calcium carbonate (CaCO3) was used as a drug surrogate to mimic the release kinetics of a low-solubility API. The release of CaCO3 from a poly(ethylene vinyl acetate) (EVA) polymer matrix was studied in ultra-high-purity water. The geometry of CaCO3, along with the manufacturing technique, was manipulated to study the implications on surrogate drug release. It was found that injection molding proved to yield higher burst release, due to higher pressures achievable during manufacturing. The extrusion process can affect the surface concentration of the pharmaceutical ingredient when extruded through a water bath, resulting in a lower initial burst concentration. Regarding CaCO3 geometry, the particle size was more critical than the surface area in terms of CaCO3 release. Larger particles showed a higher release rate, though they also displayed higher variability in release. These data can be used to engineer specific release profiles when designing composite formulations and manufacturing methods for pharmaceutical-drug-delivery applications.

Funder

Pennsylvania Department of Community and Economic Development

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3