The Phenomenon of Drug Emulsion Carriers Compaction during Their Movement in Microstructures

Author:

Błaszczyk Mariola M.ORCID,Sęk Jerzy,Przybysz Łukasz

Abstract

The greatest challenges of modern pharmacology are the design of drugs with the highest possible efficacy of an active substance and with the lowest possible invasiveness for the whole organism. A good solution features the application of a bioactive substance in different carriers. The effectiveness of such preparations is determined not only by the properties of the drug, but primarily by the dynamics of carrier movement in the body. This is the reason why studies on the dispersed systems transport in micro- and nanostructures are becoming important. This paper presents a study of emulsion systems transport in microcapillaries. A dispersed phase thickening effect was observed during the process, which resulted in a concentration increase of the flowing emulsion, in some cases up to 10 times. This phenomenon directly influences transport dynamics of such substances in microstructures and should be taken into account when designing drug parameters (concentration, release time, and action range). The effect was investigated for three different emulsions concentrations and presented quantitatively. The scales of this phenomenon occurrence at different flow conditions were investigated, and their magnitudes were modelled and described. This allows the prediction of the flow resistance in the movement of given dispersion systems, as a function of the flow rate, the emulsion parameters, and the microchannel size.

Funder

National Science Center

Publisher

MDPI AG

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3