Abstract
Gold nanoparticles (GNPs) have shown particular promise as radiosensitizing agents and as complementary drug delivery agents to improve therapeutic index in cancer treatment. Optimal implementation, however, depends critically on the localization of GNPs at the time of irradiation, which, in turn, depends on their size, shape, and chemical functionalization, as well as organism-level pharmacokinetics and interactions with the tumor microenvironment. Here, we use in vitro 3D cultures of A549 lung carcinoma cells, which recapitulate interaction with extracellular matrix (ECM) components, combined with quantitative fluorescence imaging to study how time-dependent localization of ultrasmall GNPs in tumors and ECM impacts the degree of damage enhancement to tumor cells. Confocal imaging of fluorescence-labeled GNPs in 3D culture reveals that nanoparticles are initially embedded in ECM and only gradually accumulate in cancer cells over multiple days. Furthermore, the timing of GNP redistribution from ECM to cellular compartments directly impacts efficacy, with major damage enhancement when irradiation is performed after GNPs have accumulated significantly in 3D tumor nodules. These results underscore the importance of the timing and scheduling in treatment planning to ensure optimal radiosensitization, as well as the necessity of studying these effects in model systems that recapitulate elements of tumor microenvironment interaction.
Funder
National Institutes of Health
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献