Bayesian Maximum-A-Posteriori Approach with Global and Local Regularization to Image Reconstruction Problem in Medical Emission Tomography

Author:

Denisova NatalyaORCID

Abstract

The Bayesian approach Maximum a Posteriori (MAP) provides a common basis for developing statistical methods for solving ill-posed image reconstruction problems. MAP solutions are dependent on a priori model. Approaches developed in literature are based on prior models that describe the properties of the expected image rather than the properties of the studied object. In this paper, such models have been analyzed and it is shown that they lead to global regularization of the solution. Prior models that are based on the properties of the object under study are developed and conditions for local and global regularization are obtained. A new reconstruction algorithm has been developed based on the method of local statistical regularization. Algorithms with global and local regularization were compared in numerical simulations. The simulations were performed close to the real oncologic single photon emission computer tomography (SPECT) study. It is shown that the approach with local regularization produces more accurate images of ‘hot spots’, which is especially important to tumor diagnostics in nuclear oncology.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference28 articles.

1. Le Probleme de Cauchy et les Equations aux Derives Partielles Lineares Hyperboliques;Hadamard,1932

2. Solution of incorrectly formulated problems and the regularization method;Tikhonov;Sov. Math. Doklady,1963

3. Building on the basis of local regularization of algorithms of finding approximated resolutions integral equations of the first kind of the convolution type with application of additional information;Arsenin;Prepr. Keldysh Inst. Appl. Math.,1983

4. The first soviet computer tomography;Tikhonov;Priroda,1984

5. A solution of Fredholm equation in statistical ensemble of smooth functions;Turchin;J. Comput. Math. Math. Phys.,1967

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3