Correlation of Acoustic Emissions with Electrical Signals in the Vicinity of Fracture in Cement Mortars Subjected to Uniaxial Compressive Loading

Author:

Loukidis AndronikosORCID,Tzagkarakis Dimitrios,Kyriazopoulos Antonios,Stavrakas IliasORCID,Triantis DimosORCID

Abstract

Acoustic emissions (AEs) and weak electrical signals, also known as pressure stimulated currents (PSCs), were concurrently recorded in order to investigate their behavior and detect precursory indicators when cement mortar specimens were subjected to mechanical compressive loading, emphasizing the behavior of the AEs and the PSC signal in the vicinity of fracture. The axial compressive loading protocol incorporated a constantly increasing stress, from early stress values up to the vicinity of fracture and a sequential stress stabilization until the time the specimen collapses, due to severe growing internal damages. Concurrent recordings of the electrical and acoustic emissions were performed. The AE recordings were analyzed, by incorporating the recently introduced F- and P-functions, and the well-known b-value. The experimental results highlight strong similarities regarding the variations of the PSC signal, the AE hits occurrence rate (F-function), and the AE hits energy release rate (P-function). The above was also confirmed with another similar experiment in an identical specimen. It is noteworthy that, during the stay of the specimens under a constant load regime near their strength levels, a peak appears in the above quantities, which is directly related to an increased rate of axial deformation. The temporal evolution of the b-values is also presented. Results show that the local minima appearing at values close to b ≈ 1.0 correspond to the local maxima of the PSC signal. It is straightforwardly concluded that when both the PSC signal and the AE data are combined, they provide clear pre-failure indicators.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3