Incorporating Artificial Intelligence Technology in Smart Greenhouses: Current State of the Art

Author:

Maraveas ChrysanthosORCID

Abstract

This article presents the current state-of-the-art research on applying artificial intelligence (AI) technology in smart greenhouses to optimize crop yields, water, and fertilizer use efficiency, to reduce pest and disease, and to enhance agricultural sustainability. The key technologies of interest were robotic systems for pesticide application, irrigation, harvesting, bio-inspired algorithms for the automation of greenhouse processes, energy management, machine path planning and operation of UAVs (unmanned aerial vehicles), resolution of scheduling problems, and image signal processing for pest and disease diagnosis. Additionally, the review investigated the cost benefits of various energy-management and AI-based energy-saving technologies, the integration of photovoltaics and dynamic pricing based on real-time and time-of-use metrics, and the cost benefits of LoRa, Wi-Fi, Bluetooth, ZigBee, mobile, and RFID (radiofrequency identification) technologies. The review established that commercially viable AI technologies for agriculture had increased exponentially. For example, AI-based irrigation and soil fertilizer application enabled farmers to realize higher returns on investment on fertilizer application and gross returns above the fertilizer cost, higher yields, and resource use efficiency. Similarly, AI image detection techniques led to the early diagnosis of powdery mildew. The precise operation of agricultural robots was supported by the integration of light imaging, detection, and ranging (LIDAR) optical and electro-optical cameras in place of the traditional GPS (geographic positioning systems) technologies, which are prone to errors. However, critical challenges remained unresolved, including cost, disparities between research and development (R&D) innovations and technology commercialization, energy use, the tradeoff between accuracy and computational speeds, and technology gaps between the Global North and South. In general, the value of this review is that it surveys the literature on the maturity level of various AI technologies in smart greenhouses and offers a state-of-the-art picture of how far the technologies have successfully been applied in agriculture and what can be done to optimize their usability.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference174 articles.

1. An IoT-based E-business model of intelligent vegetable greenhouses and its key operations management issues;Ruan;Neural Comput. Appl.,2020

2. Bio-Inspired Optimization Algorithms for Improving Artificial Neural Networks: A Case Study on Handwritten Letter Recognition;Ewees;Computational Linguistics, Speech and Image Processing for Arabic Language,2017

3. Jellason, N.P., Robinson, E.J.Z., and Ogbaga, C.C. (2021). Agriculture 4.0: Is sub-Saharan Africa ready?. Appl. Sci., 11.

4. European Institute of Innovation and Technology (EIT) (2021). Emerging AI and Data Driven Business Models in Europe, European Institute of Innovation and Technology (EIT).

5. Munoz, J.M. (2022, June 25). AI in Agriculture: Is the Grass Greener? California Management Review. Available online: https://cmr.berkeley.edu/2020/03/ai-agriculture/.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3