A Multi-Level Fuzzy Evaluation Method for the Reliability of Integrated Energy Systems

Author:

He PeiORCID,Guo Yangming,Wang Xiaodong,Zhang Shiqi,Zhong Zhihao

Abstract

With the increase in environmental pressure and rapid development of renewable energy technologies, an integrated energy system has been recognized as an effective approach to accommodate large-scale renewables and achieve environmental sustainability. While an integrated energy system significantly improves energy efficiency, the interaction between different energy systems may also bring multiple operational risks to its reliability, which necessitates an effective reliability assessment technique. In this paper, we proposed a multi-level fuzzy evaluation model based on combined empowerment for the reliability evaluation of an integrated energy system. The analytic hierarchy process method and entropy weight method were used to calculate the weight of each index in the evaluation model. Fuzzy evaluation matrix was constructed by the membership degree of a single factor, which was defined by the fuzzy comprehensive evaluation method. The multi-level fuzzy evaluation results were obtained based on single-level evaluation results. Finally, case studies were carried out based on a practical integrated energy system; we proposed 5 first-level indicators such as reliability and economy and 12 second-level indicators such as mean time of incapacity. The simulation results (85.15) showed the effectiveness and advantages of the proposed model.

Funder

National Defense Basic Research Program, the National Defense Science and Technology Key Laboratory Fund

Open Fund of CETC Key Laboratory of Data Link Technology

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference50 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3