Improved Evaluation of Cultivation Performance for Maize Based on Group Decision Method of Data Envelopment Analysis Model

Author:

Huang Wei,Li Han,Chen Kaifeng,Teng Xiaohua,Cui Yumeng,Yu Helong,Bi Chunguang,Huang Meng,Tang YouORCID

Abstract

Maize cultivation performance, including the efficiency of the input and output of maize, which reflect the allocation and utilization of resources in the process of maize cultivation, is crucial for evaluating and improving maize cultivation. This paper adopts the method of quadratic regression orthogonal rotation combination experimental design to explore the effects of four main cultivation measures (planting density, nitrogen fertilizer, phosphorus fertilizer and potassium fertilizer) on maize yield at five levels (−2, −1, 0, 1; 2). The CCR (A. Charnes, W. Cooper and E. Rhodes) model, which is the basic model of data envelopment analysis (DEA), was used to evaluate the 36 groups of cultivation measures. The results show that 9 groups are CCR-effective cultivation measures, but the performance of these cultivation measures cannot be further evaluated. To improve the evaluation of cultivation performance, a novel method termed as the group decision method of DEA (GDM-DEA) is proposed to detect the improvement of evaluation performance and is tested using the measurements of maize cultivation. The results suggest that the GDM-DEA method can classify and sort the performance of all the cultivation measures, which is more sensitive and accurate than the CCR method. For the effective cultivation measures that meet the requirements of GDM-DEA, the optimal cultivation measures could be determined according to the ranking of yield. This method determined the most effective cultivation measure. Further independent validation showed that the final optimal cultivation measures fall in the range of the expected cultivation measures. The GDM-DEA model is capable of more effectively evaluating cultivation performance.

Funder

Science and Technology Development Plan Project of Jilin Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference60 articles.

1. Archaeological evidence of teosinte domestication from Guilá Naquitz, Oaxaca;Benz;Proc. Natl. Acad. Sci. USA,2001

2. The origin of the naked grains of maize;Wang;Nature,2005

3. FAO (2015). FAO Statistical Pocketbook 2015: World Food and Agriculture, Food and Agriculture Organization of the United Nations.

4. Optimization of source–sink dynamics in plant growth for ideotype breeding: A case study on maize;Qi;Comput. Electron. Agric.,2010

5. Optimizing Soil Nitrogen Supply in the Root Zone to Improve Maize Management;Chen;Soil Sci. Soc. Am. J.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3