Study on the Aging Behavior of an Ultra-High Molecular Weight Polyethylene Fiber Barrier Net in a Marine Environment

Author:

Zhang Wangxuan,Jing Xiaofei,Bai Yanqiang,Shan Xiaoming,Qi Xiaoyu,Yan Maoxin,Cui Zhongyu

Abstract

In the present work, the performance of ultra-high molecular weight polyethylene (UHMWPE) barrier nets in marine environments is investigated by Fourier transform infrared spectroscopy, thermogravimetry, scanning electron microscopy, and tensile experiments. The chemical, morphological, thermal stability, and strength changes after aging in salt spray, hygrothermal, and ultraviolet (UV) environments are characterized. An environmental spectrum is designed to simulate a real service environment and predict the service life of UHMWPE. The results show that UV energy can activate UHMWPE molecules and lead to chain breaking, which lowers the breaking strength more efficiently than salt spray. In a hygrothermal environment, the UHMPE fibers bond into clumps, which causes a slight increase in breaking strength after the initial rapid decrease with aging time. The acceleration ratio of the environmental spectrum increases with increasing aging time, which may be caused by the cross-linking and degradation of macromolecular chains in the material. The environmental spectrum given by this work can be used to evaluate performance and predict the service life of UHMWPE barrier nets in marine environments.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3