Inerting Waste Al Alloy Dust with Natural High Polymers: Sustainability of Industrial Waste

Author:

Liu Bo,Yin Wenjing,Xu KailiORCID,Zhang YuyuanORCID

Abstract

A large amount of waste dust will be produced in the process of metal grinding, resulting in a waste of resources and environmental pollution. Therefore, we present a new method of inerting waste aluminum (Al) alloy dust for recycling purposes. Three natural high polymers—starch, pectin, and hydroxypropyl cellulose—were selected to inert waste metal dust in order to prevent the alloy from hydrolyzing and keep the dust pure enough for reuse. The particles of the Al base alloy before and after dust reaction were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infra-red (FTIR), and the relevant reaction mechanism was clarified. The hydrogen evolution test indicated that, across the temperature interval of 313–333 K, 0.75 wt% pectin inerted hydrogen evolution most efficiently (90.125%). XRD analysis indicated that the inerted product is composed of Al monomer and Al3Mg2, with no detectable content of Al hydroxide. The purity of the Al alloy dust was preserved. SEM and FTIR analyses indicated that the -OH, -COOH, and -COOCH3 functional groups in the high polymer participated in the coordination reaction by adsorbing on the surface of the waste Al alloy particles to produce a protective film, which conforms to Langmuir’s adsorption model. Verification of the inerted Al alloy dust in industrial production confirmed the possibility of reusing waste Al alloy dust. This study provides a simple and effective method for recycling waste Al alloy dust.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3