Optimizing PV-Hosting Capacity with the Integrated Employment of Dynamic Line Rating and Voltage Regulation

Author:

Dissanayake Ramitha,Wijethunge Akila,Wijayakulasooriya Janaka,Ekanayake JanakaORCID

Abstract

A record amount of renewable energy has been added to global electricity generation in recent years. Among the renewable energy sources, solar photovoltaic (PV) is the most popular energy source integrated into low voltage distribution networks. However, the voltage limits and current-carrying capacity of the conductors become a barrier to maximizing the PV-hosting capacity in low voltage distribution networks. This paper presents an optimization approach to maximize the PV-hosting capacity in order to fully utilize the existing low voltage distribution network assets. To achieve the maximum PV-hosting capacity of the network, a novel method based on the dynamic line rating of the low voltage distribution network, the coordinated operation of voltage control methods and the PV re-phasing technique was introduced and validated using a case study. The results show that the proposed methodology can enhance the PV-hosting capacity by 53.5% when compared to existing practices.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference50 articles.

1. Energy Policy and Climate Change: A Multidisciplinary Approach to a Global Problem;Energies,2015

2. (2022, September 18). The Paris Agreement. Available online: https://unfccc.int/ndc-information/the-paris-agreement.

3. A critical review of the integration of renewable energy sources with various technologies;Prot. Control Mod. Power Syst.,2021

4. REN21 (2022). RENEWABLES 2022: GLOBAL STATUS REPORT, REN21 Secretariat.

5. A Review Paper on Electricity Generation from Solar Energy;Int. J. Res. Appl. Sci. Eng. Technol.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3