Characteristics and Seismic Identification Mode of Ultra-Deep Carbonate Fault-Controlled Reservoir in Northwest China

Author:

Gong WeiORCID,Wen Xiaotao,Zhou Dongyong

Abstract

Ordovician carbonate reservoirs in the Shunbei area of the Tarim Basin are characterized by large burial depth, small vertical fault displacement of the strike-slip fault zone, small karst development scale, strong reservoir heterogeneity, complex and diverse seismic reflection types, which lead to unclear seismic response characteristics of fault zone and reservoir, and further restrict the fine description of ultra-deep (>7300 m) fault controlled reservoirs. On the basis of high-precision 3D seismic data analysis, combined with drilling, logging, and comprehensive geological interpretation data in the Shunbei area, seismic geological models of different types of reservoirs and fault zones are established. The changes in seismic response characteristics of fault zones and reservoirs are simulated and analyzed by changing reservoir size, scale, fault and fracture cavity combination modes, as well as other factors. On this basis, two seismic identification models of fault-controlled reservoirs in the Shunbei area are summarized and established. The seismic identification mode of seismic reflection marker wave of fault-controlled reservoir is mainly “fault seismic response characteristics & weak reflection” and red trough anomaly under T74. The internal seismic identification modes are mainly “fault seismic response characteristics & random reflection”, “fault seismic response characteristics & beading”, “fault seismic response characteristics & linear weak reflection”, and “fault seismic response characteristics & random reflection”. Among them, except for “fault seismic response characteristics & random reflection”, the coincidence rate of reservoir prediction of other three types of seismic response characteristics is more than 70%. The coincidence rate of the other three types of seismic response characteristics of a reservoir is more than 70%. The research results provide a reference for the prediction and description of ultra-deep carbonate fault-controlled reservoirs.

Funder

the National Natural Science Foundation of China

the Natural Science Foundation of Sichuan Province of China

State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3