Effects of Antimony Stress on Growth and Physiology of 10 Genotypes of Catalpa bungei

Author:

Liu Zhenhua,Ma Wenjun,Tong Fangping,Wang Junhui

Abstract

Increasing levels of antimony (Sb) pollution have been recognized as an emerging environmental problem. Phytoremediation of Sb-contaminated soil is a green, economical, and effective method for restoring polluted soils. Here, we studied differences in Sb tolerance, accumulation, and transport by different genotypes of Catalpa bungei C. A. Mey, with the goal of identifying genotypes that are suitable for remediating Sb-contaminated soil. Different concentrations of Sb were applied to soil, and we analyzed variation in growth, biomass, Sb content in different organs, Sb transport capacity, oxidizing substances, antioxidants, and antioxidant enzyme activities in 10 C. bungei genotypes. Marked differences were found in plant height, ground diameter, and biomass among different genotypes at given Sb concentrations. The Sb concentration in different plant organs also varied between genotypes. The content of Sb in each genotype was proportional to the exposure. At 600 mg Sb/kg soil, the highest concentration of Sb in roots and leaves was found in Genotype 63, and that in stems was found in Genotype 8402. The lowest concentration of Sb in roots, stems, and leaves was found in Genotypes 8402, 2-8, and 20-01, respectively. At 1200 mg Sb/kg soil, Genotype 5-2 had the highest concentration of Sb in roots, and Genotype 1-1 had the highest concentration in stems and leaves. The lowest concentration of Sb in roots was in Genotype 72, and that in stems and leaves was found in Genotype 20-01. At 2000 mg Sb/kg soil, the highest concentration of Sb in roots was found in Genotype 5-8, in stems in Genotype 8402, and in leaves in Genotype 72. The lowest concentration of Sb in roots was observed in Genotype 72 and in stems and leaves in Genotype 2-8. After absorption by C. bungei, Sb mainly accumulated in the roots, and upward transfer ability was poor. The Sb biological concentration factor of roots of all genotypes was >1 at each tested Sb concentration. Our results demonstrate that all 10 C. bungei genotypes could be used for plant stabilization of Sb-contaminated soil. However, the different genotypes of C. bungei had different responses to different Sb concentrations. Based on root Sb accumulation values, at soil Sb concentrations around 600 mg/kg, Genotypes 1, 63, and 5-8 are suited to phytoremediation; Genotypes 5-8, 1, and 5-2 are suited to phytoremediation at soil Sb concentrations around 1200 mg/kg; and Genotypes 5-8, 1, and 8402 are suited to phytoremediation at soil Sb concentrations around 2000 mg/kg. We demonstrate for the first time that Sb-contaminated soil can be improved by using specific plant genotypes tailored to different levels of Sb pollution.

Funder

Fundamental Research Funds of the Chinese Academy of Forestry

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3