Parasitic-Based Active Gate Driver Improving the Turn-On Process of 1.7 kV SiC Power MOSFET

Author:

Lasek BartoszORCID,Trochimiuk PrzemysławORCID,Kopacz RafałORCID,Rąbkowski JacekORCID

Abstract

This article discusses an active gate driver for a 1.7 kV/325 A SiC MOSFET module. The main purpose of the driver is to adjust the gate voltage in specified moments to speed up the turn-on cycle and reduce the amount of dissipated energy. Moreover, an adequate manipulation of the gate voltage is necessary as the gate current should be reduced during the rise of the drain current to avoid overshoots and oscillations. The gate voltage is switched at the right moments on the basis of the feedback signal provided from a measurement of the voltage across the parasitic source inductance of the module. This approach simplifies the circuit and provides no additional power losses in the measuring circuit. The paper contains the theoretical background and detailed description of the active gate driver design. The model of the parasitic-based active gate driver was verified using the double-pulse procedure both in Saber simulations and laboratory experiments. The active gate driver decreases the turn-on energy of a 1.7 kV/325 A SiC MOSFET by 7% comparing to a conventional gate driver (VDS = 900 V, ID = 270 A, RG = 20 Ω). Furthermore, the proposed active gate driver lowered the turn-on cycle time from 478 to 390 ns without any serious oscillations in the main circuit.

Funder

National Science Center, Poland

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Isolated Gate Driver for Medium Voltage Applications Using a Single Structure;Electronics;2024-08-24

2. Analysis of a Gate-Driving Technique for Enhancing the GaN Power Transistors Performance;2023 IEEE 2nd Industrial Electronics Society Annual On-Line Conference (ONCON);2023-12-08

3. Special Issue on Power Converters: Modelling, Control, and Applications;Applied Sciences;2023-05-28

4. A Review of the types of disturbances and suppression methods for SiC MOSFET driver;2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI);2022-07

5. A Closed-Loop Active Gate Driver of SiC MOSFET for Voltage Spike Suppression;IEEE Open Journal of Power Electronics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3