Control of DC Motors to Guide Unmanned Underwater Vehicles

Author:

Sands TimothyORCID

Abstract

Many research manuscripts propose new methodologies, while others compare several state-of-the-art methods to ascertain the best method for a given application. This manuscript does both by introducing deterministic artificial intelligence (D.A.I.) to control direct current motors used by unmanned underwater vehicles (amongst other applications), and directly comparing the performance of three state-of-the-art nonlinear adaptive control techniques. D.A.I. involves the assertion of self-awareness statements and uses optimal (in a 2-norm sense) learning to compensate for the deleterious effects of error sources. This research reveals that deterministic artificial intelligence yields 4.8% lower mean and 211% lower standard deviation of tracking errors as compared to the best modeling method investigated (indirect self-tuner without process zero cancellation and minimum phase plant). The improved performance cannot be attributed to superior estimation. Coefficient estimation was merely on par with the best alternative methods; some coefficients were estimated more accurately, others less. Instead, the superior performance seems to be attributable to the modeling method. One noteworthy feature is that D.A.I. very closely followed a challenging square wave without overshoot—successfully settling at each switch of the square wave—while all of the other state-of-the-art methods were unable to do so.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference35 articles.

1. Theory of the Motion of the Heavenly Bodies;Gauss,1963

2. Factorization Methods for Discrete Sequential Estimation;Bierman,1977

3. Design of a self-optimizing control system;Kalman;Trans. ASME,1958

4. Adaptive digital regulation of noisy systems;Peterka,1970

5. An approach to adaptive control using real time identification

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3