Development of an Automatic Low-Cost Air Quality Control System: A Radon Application

Author:

Alvarellos AlbertoORCID,Chao Andrea LopezORCID,Rabuñal Juan RamónORCID,García-Vidaurrázaga María D.,Pazos Alejandro

Abstract

Air pollution is the fourth-largest overall risk factor for human health worldwide. Ambient air pollution (outdoors) and household air pollution (indoors) cause about 6.5 million premature deaths. The World Health Organization has established that between 3% and 14% of lung cancer cases are due to radon gas, making it the most important cause of lung cancer after smoking. This work presents a fully automated, low-cost indoor air quality control system that can monitor temperature, pressure, humidity, total volatile organic compounds (TOVC), and radon concentration. Using the radon concentration as an air quality measure, we created a prediction algorithm. The system uses those predictions to control a ventilation system automatically. We tested the algorithm for different prediction windows and compared the results with those without the ventilation system in a radon research room. In this room, the radon concentration is high 100% of the time, reaching a level eleven times higher than the recommended limit. The results show that the system can achieve an 86% reduction of the radon concentration, maintaining it low 90% of the time while having the ventilation system on during only 34% of the time. This work demonstrates that we can control air quality using low-cost resources, keeping a household or workplace safe but comfortable.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding Seasonal Indoor Radon Variability from Data Collected with a LoRa-Enabled IoT Edge Device;Applied Sciences;2023-04-09

2. IoT Architectures for Indoor Radon Management: A Prospective Analysis;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2023

3. Low-cost radon monitoring with validation by a reference instrument;Instrumentation Science & Technology;2022-07-04

4. Effect of COVID-19 Response Policy on Air Quality: A Study in South China Context;Atmosphere;2022-05-20

5. Impacts of Indoor Radon on Health: A Comprehensive Review on Causes, Assessment and Remediation Strategies;International Journal of Environmental Research and Public Health;2022-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3