A Proactive Attack Detection for Heating, Ventilation, and Air Conditioning (HVAC) System Using Explainable Extreme Gradient Boosting Model (XGBoost)

Author:

Khan Irfan UllahORCID,Aslam NidaORCID,AlShedayed RanaORCID,AlFrayan Dina,AlEssa Rand,AlShuail Noura A.,Al Safwan Alhawra

Abstract

The advent of Industry 4.0 has revolutionized the life enormously. There is a growing trend towards the Internet of Things (IoT), which has made life easier on the one hand and improved services on the other. However, it also has vulnerabilities due to cyber security attacks. Therefore, there is a need for intelligent and reliable security systems that can proactively analyze the data generated by these devices and detect cybersecurity attacks. This study proposed a proactive interpretable prediction model using ML and explainable artificial intelligence (XAI) to detect different types of security attacks using the log data generated by heating, ventilation, and air conditioning (HVAC) attacks. Several ML algorithms were used, such as Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), Ada Boost (AB), Light Gradient Boosting (LGBM), Extreme Gradient Boosting (XGBoost), and CatBoost (CB). Furthermore, feature selection was performed using stepwise forward feature selection (FFS) technique. To alleviate the data imbalance, SMOTE and Tomeklink were used. In addition, SMOTE achieved the best results with selected features. Empirical experiments were conducted, and the results showed that the XGBoost classifier has produced the best result with 0.9999 Area Under the Curve (AUC), 0.9998, accuracy (ACC), 0.9996 Recall, 1.000 Precision and 0.9998 F1 Score got the best result. Additionally, XAI was applied to the best performing model to add the interpretability in the black-box model. Local and global explanations were generated using LIME and SHAP. The results of the proposed study have confirmed the effectiveness of ML for predicting the cyber security attacks on IoT devices and Industry 4.0.

Funder

SAUDI ARAMCO Cybersecurity Chair, Imam Abdulrahman Bin Faisal University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3