Electroencephalography Signal Analysis for Human Activities Classification: A Solution Based on Machine Learning and Motor Imagery

Author:

de Brito Guerra Tarciana C.1ORCID,Nóbrega Taline1ORCID,Morya Edgard2ORCID,de M. Martins Allan1ORCID,de Sousa Vicente A.1ORCID

Affiliation:

1. Graduate Program in Electrical and Computer Engineering (PPgEEC), Federal University of Rio Grande do Norte, Natal 59078-970, Brazil

2. Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba 59280-000, Brazil

Abstract

Electroencephalography (EEG) is a fundamental tool for understanding the brain’s electrical activity related to human motor activities. Brain-Computer Interface (BCI) uses such electrical activity to develop assistive technologies, especially those directed at people with physical disabilities. However, extracting signal features and patterns is still complex, sometimes delegated to machine learning (ML) algorithms. Therefore, this work aims to develop a ML based on the Random Forest algorithm to classify EEG signals from subjects performing real and imagery motor activities. The interpretation and correct classification of EEG signals allow the development of tools controlled by cognitive processes. We evaluated our ML Random Forest algorithm using a consumer and a research-grade EEG system. Random Forest efficiently distinguishes imagery and real activities and defines the related body part, even with consumer-grade EEG. However, interpersonal variability of the EEG signals negatively affects the classification process.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

1. World Health Organization (2023, January 24). WHO Global Disability Action Plan 2014–2021. Better Health for All People with Disability, Available online: https://www.who.int/publications/i/item/who-global-disability-action-plan-2014-2021.

2. World Health Organization (2023, January 24). World Report on Disability, Available online: https://apps.who.int/iris/handle/10665/44575.

3. Silva, C.D. (2017). Processamento de Sinais de EEG para Classificação de Tarefas Motoras em Sistemas de Interface Cérebro-Máquina. [Ph.D Thesis, Universidade Federal de Santa Catarina].

4. Brain-computer interfaces in medicine;Shih;Mayo Clin. Proc.,2012

5. Graimann, B., Allison, B., and Pfurtscheller, G. (2010). Brain-Computer Interfaces, The Frontiers Collection; Springer.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3