High-Quality Syngas Production by Chemical Looping Gasification of Bituminite Based on NiFe2O4 Oxygen Carrier

Author:

Yang Ming1,Song Da12ORCID,Li Yang3,Cao Jinzeng2,Wei Guoqiang2,He Fang1

Affiliation:

1. College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China

2. Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China

3. College of Chemistry and Engineering, Northeast Petroleum University, Daqing 163318, China

Abstract

Chemical looping gasification (CLG) is an effective coal utilization technology. In this work, the CLG of bituminite was investigated through fixed-bed batch experiments using NiFe2O4 oxygen carrier (OC) to achieve high-quality syngas. The changes in the phase of the oxygen carrier during the chemical looping reaction and the reaction mechanism were explored. The results show that elevated temperature and adding a fraction of steam facilitate the gasification reaction. Adding an appropriate amount of ZrO2 into the NiFe2O4 and modification with alkali metal can enhance the performance of the oxygen carrier. A carbon conversion of 95% and a syngas (CO and H2) selectivity of 86% were obtained under the optimized reaction conditions of 950 °C, an oxygen-carrier-to-bituminite (O/B) ratio of 7:3, a NiFe2O4/ZrO2 ratio of 7:3, and a steam rate of 0.08 mL/min. Modification of the NiFe2O4 by doping alkali metal can significantly facilitate the CLG process. Alkali lignin ash has a more pronounced modifying effect on oxygen carriers than K2CO3. The NiFe2O4 OC underwent a gradual reduction in Ni2+ → Ni and Fe3+ → Fe8/3+ → Fe2+ → Fe processes during the gasification reaction phase. In addition, 20 redox cycles were conducted to demonstrate the oxygen carriers’ good cyclic reaction performance in the CLG process. After 20 redox cycles, the carbon conversion rate was maintained at about 90%, and the syngas selectivity was stably kept at over 80%. This work laid the theoretical foundation for the clean and efficient use of bituminite.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3