Efficiency Optimization of LCL-Resonant Wireless Power Transfer Systems via Bidirectional Electromagnetic–Thermal Coupling Field Dynamics

Author:

Yuan Yao1,La Yuan2,Shen Sicheng3,Zhao Yihui3,Li Jianchao3,Yin Fanghui3ORCID

Affiliation:

1. Electric Power Research Institute of China Southern Grid, Guangzhou 510663, China

2. China Southern Grid, Guangzhou 510663, China

3. Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

Abstract

This paper delved into the thermal dynamics and stability of Wireless Power Transfer (WPT) systems, with a focus on the temperature effects on the coil structure. Using the Finite Element Method (FEM), this study investigated both unidirectional and bidirectional coupling field simulations, assessing their impacts on the transmission efficiency of LCL-resonant WPT systems. The boundary conditions and processes of the electromagnetic–thermal coupling field related to coil loss were analyzed, as well as the dynamic thermal balance in the bidirectional coupling field model. It was found that there is a significant temperature variation across the coil, with the highest temperatures at the central position and the lowest at the edges. This temperature rise notably changed the electrical parameters of the system, leading to variations in its operating state and a reduction in transmission efficiency. A constant coil voltage control strategy was more effective in mitigating the temperature rise compared to a constant coil current strategy, providing valuable insight for enhancing the efficiency and stability of WPT systems.

Funder

Electric Power Research Institute of China Southern Grid

China Southern Grid

Shenzhen Science and Technology Innovation Committee

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3