Innovative Application of Model-Based Predictive Control for Low-Voltage Power Distribution Grids with Significant Distributed Generation

Author:

Dkhili Nouha,Salas DavidORCID,Eynard JulienORCID,Thil StéphaneORCID,Grieu StéphaneORCID

Abstract

In past decades, the deployment of renewable-energy-based power generators, namely solar photovoltaic (PV) power generators, has been projected to cause a number of new difficulties in planning, monitoring, and control of power distribution grids. In this paper, a control scheme for flexible asset management is proposed with the aim of closing the gap between power supply and demand in a suburban low-voltage power distribution grid with significant penetration of solar PV power generation while respecting the different systems’ operational constraints, in addition to the voltage constraints prescribed by the French distribution grid operator (ENEDIS). The premise of the proposed strategy is the use of a model-based predictive control (MPC) scheme. The flexible assets used in the case study are a biogas plant and a water tower. The mixed-integer nonlinear programming (MINLP) setting due to the water tower ON/OFF controller greatly increases the computational complexity of the optimisation problem. Thus, one of the contributions of the paper is a new formulation that solves the MINLP problem as a smooth continuous one without having recourse to relaxation. To determine the most adequate size for the proposed scheme’s sliding window, a sensitivity analysis is carried out. Then, results given by the scheme using the previously determined window size are analysed and compared to two reference strategies based on a relaxed problem formulation: a single optimisation yielding a weekly operation planning and a MPC scheme. The proposed problem formulation proves effective in terms of performance and maintenance of acceptable computational complexity. For the chosen sliding window, the control scheme drives the power supply/demand gap down from the initial one up to 38%.

Funder

Agence de la transition écologique

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference52 articles.

1. Distributed generation: definition, benefits and issues

2. Principes D’étude et de Développement du Réseau pour le Raccordement des Clients Consommateurs et Producteurs BT,2019

3. A Method to Assess the Wind and Solar Resource and to Quantify Interannual Variability over the United States under Current and Projected Future Climate

4. Regulation of the Power Sector;Pérez-Arriaga,2014

5. Determining the impact of distributed generation on power systems. I. Radial distribution systems;Barker;IEEE Power Eng. Soc. Summer Meet.,2000

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3