A Deep Learning-Based Generalized System for Detecting Pine Wilt Disease Using RGB-Based UAV Images

Author:

You JieORCID,Zhang Ruirui,Lee Joonwhoan

Abstract

Pine wilt is a devastating disease that typically kills affected pine trees within a few months. In this paper, we confront the problem of detecting pine wilt disease. In the image samples that have been used for pine wilt disease detection, there is high ambiguity due to poor image resolution and the presence of “disease-like” objects. We therefore created a new dataset using large-sized orthophotographs collected from 32 cities, 167 regions, and 6121 pine wilt disease hotspots in South Korea. In our system, pine wilt disease was detected in two stages: n the first stage, the disease and hard negative samples were collected using a convolutional neural network. Because the diseased areas varied in size and color, and as the disease manifests differently from the early stage to the late stage, hard negative samples were further categorized into six different classes to simplify the complexity of the dataset. Then, in the second stage, we used an object detection model to localize the disease and “disease-like” hard negative samples. We used several image augmentation methods to boost system performance and avoid overfitting. The test process was divided into two phases: a patch-based test and a real-world test. During the patch-based test, we used the test-time augmentation method to obtain the average prediction of our system across multiple augmented samples of data, and the prediction results showed a mean average precision of 89.44% in five-fold cross validation, thus representing an increase of around 5% over the alternative system. In the real-world test, we collected 10 orthophotographs in various resolutions and areas, and our system successfully detected 711 out of 730 potential disease spots.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3