NinaB and BCO Collaboratively Participate in the β-Carotene Catabolism in Crustaceans: A Case Study on Chinese Mitten Crab Eriocheir sinensis

Author:

Zhang Min1,Xiong Jingyi1,Yang Zonglin1,Zhu Boxiang1,Wu Yuting1,Chen Xiaowu123ORCID,Wu Xugan123

Affiliation:

1. Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China

2. Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China

3. Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China

Abstract

Carotenoid cleavage oxygenases can cleave carotenoids into a range of biologically important products. Carotenoid isomerooxygenase (NinaB) and β, β-carotene 15, 15′-monooxygenase (BCO1) are two important oxygenases. In order to understand the roles that both oxygenases exert in crustaceans, we first investigated NinaB-like (EsNinaBl) and BCO1-like (EsBCO1l) within the genome of Chinese mitten crab (Eriocheir sinensis). Their functions were then deciphered through an analysis of their expression patterns, an in vitro β-carotene degradation assay, and RNA interference. The results showed that both EsNinaBl and EsBCO1l contain an RPE65 domain and exhibit high levels of expression in the hepatopancreas. During the molting stage, EsNinaBl exhibited significant upregulation in stage C, whereas EsBCO1l showed significantly higher expression levels at stage AB. Moreover, dietary supplementation with β-carotene resulted in a notable increase in the expression of EsNinaBl and EsBCO1l in the hepatopancreas. Further functional assays showed that the EsNinaBl expressed in E. coli underwent significant changes in its color, from orange to light; in addition, its β-carotene cleavage was higher than that of EsBCO1l. After the knockdown of EsNinaBl or EsBCO1l in juvenile E. sinensis, the expression levels of both genes were significantly decreased in the hepatopancreas, accompanied by a notable increase in the redness (a*) values. Furthermore, a significant increase in the β-carotene content was observed in the hepatopancreas when EsNinaBl-mRNA was suppressed, which suggests that EsNinaBl plays an important role in carotenoid cleavage, specifically β-carotene. In conclusion, our findings suggest that EsNinaBl and EsBCO1l may exhibit functional co-expression and play a crucial role in carotenoid cleavage in crabs.

Funder

general project from the Natural Science Foundation of China

a Key R&D Program

Ministry of Science and Technology of China, and an agriculture R&D project from the Shanghai Municipal Science and Technology Commission

Leading Talent Project

Academic Fellow program in the School of Biological Sciences, Universiti Sains Malaysia

Publisher

MDPI AG

Reference51 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3