Enhancing Machine-Learning Prediction of Enzyme Catalytic Temperature Optima through Amino Acid Conservation Analysis

Author:

Cao Yinyin12ORCID,Qiu Boyu23,Ning Xiao24,Fan Lin24,Qin Yanmei24,Yu Dong12,Yang Chunhe12,Ma Hongwu25ORCID,Liao Xiaoping25ORCID,You Chun245ORCID

Affiliation:

1. College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China

2. Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China

3. Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

5. National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China

Abstract

Enzymes play a crucial role in various industrial production and pharmaceutical developments, serving as catalysts for numerous biochemical reactions. Determining the optimal catalytic temperature (Topt) of enzymes is crucial for optimizing reaction conditions, enhancing catalytic efficiency, and accelerating the industrial processes. However, due to the limited availability of experimentally determined Topt data and the insufficient accuracy of existing computational methods in predicting Topt, there is an urgent need for a computational approach to predict the Topt values of enzymes accurately. In this study, using phosphatase (EC 3.1.3.X) as an example, we constructed a machine learning model utilizing amino acid frequency and protein molecular weight information as features and employing the K-nearest neighbors regression algorithm to predict the Topt of enzymes. Usually, when conducting engineering for enzyme thermostability, researchers tend not to modify conserved amino acids. Therefore, we utilized this machine learning model to predict the Topt of phosphatase sequences after removing conserved amino acids. We found that the predictive model’s mean coefficient of determination (R2) value increased from 0.599 to 0.755 compared to the model based on the complete sequences. Subsequently, experimental validation on 10 phosphatase enzymes with undetermined optimal catalytic temperatures shows that the predicted values of most phosphatase enzymes based on the sequence without conservative amino acids are closer to the experimental optimal catalytic temperature values. This study lays the foundation for the rapid selection of enzymes suitable for industrial conditions.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Tianjin Synthetic Biotechnology Innovation Capacity Improvement Projects

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3