Theoretical Study of the D-T Fuel Burning Rate in Z-Pinch Facilities with Magneto-Inertial Confinement

Author:

Bayakhmetov Olzhas1ORCID,Azamatov Assylkhan1

Affiliation:

1. Institute of Nuclear Physics, Almaty 050032, Kazakhstan

Abstract

This paper focuses on the theoretical study of the burning rate of D-T fuel in Z-pinch devices with magneto-inertial confinement. The investigated nuclear fusion process involved fast laser ignition of a mixed D-T fuel contained in a capsule at a temperature of 10 keV, influenced by a strong electromagnetic field. The D-T, D-D, D-3He, 3He-3He, and T-T fusion reactions were employed in the calculations. Based on modern experimental fit data of nuclear fusion reaction rates, the particle and energy balance equations, along with their numerical solutions, were considered, utilizing the ion densities of charged particles such as protons, deuterium, tritium, 3He, and 4He ions. The plasma was in a hot, ultra-dense state, under the quasi-neutrality condition, with initial deuterium and tritium densities of 5×1023 cm−3 and an electron density of 10×1023 cm−3. The ion and electron temperatures were considered equal in this paper. The time dependencies of the ion densities, plasma temperature, energy yield from charged ions and neutrons, fusion power density, and bremsstrahlung radiation loss were investigated.

Funder

Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3