Evaluation of the Biological Effect of Non-UV-Activated Bergapten on Selected Human Tumor Cells and the Insight into the Molecular Mechanism of Its Action

Author:

Bartnik Magdalena1ORCID,Sławińska-Brych Adrianna2,Mizerska-Kowalska Magdalena3ORCID,Zdzisińska Barbara3ORCID

Affiliation:

1. Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodźki 1 Street, 20-093 Lublin, Poland

2. Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland

3. Department of Virology and Immunology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland

Abstract

There is some evidence that non-photoactivated psoralens may be active against breast and colon tumor cells. Therefore, we evaluated the antiproliferative, proapoptotic, and anti-migrative effect of 5-methoxypsoralen (5-MOP) isolated from Peucedanum tauricum MB fruits in human colorectal adenocarcinoma (HT-29 and SW620), osteosarcoma (Saos-2 and HOS), and multiple myeloma (RPMI8226 and U266). Dose- and cell-line-dependent effects of 5-MOP on viability and proliferation were observed, with the strongest inhibitory effect against Saos-2 and a moderate effect against the HOS, HT-29, and SW620 cells. Multiple myeloma showed low sensitivity. The high viability of human normal cell cultures (HSF and hFOB) in a wide range of 5-MOP concentrations tested (6.25–100 µM) was confirmed. Moreover, the migration of treated Saos-2, SW620, and HT-29 cell lines was impaired, as indicated via a wound healing assay. Flow cytometry analysis conducted on Saos-2 cells revealed the ability of 5-MOP to block the cell cycle in the G2 phase and trigger apoptosis, which was accompanied by a loss of mitochondrial membrane potential, caspases (-9 and -3) activation, the altered expression of the Bax and Bcl-2 proteins, and decreased AKT phosphorylation. This is the first report evaluating the antiproliferative and antimigratory impact of non-UV-activated bergapten on the abovementioned (except for HT-29) tumor cells, which provides new data on the potential role of 5-MOP in inhibiting the growth of various types of therapeutic-resistant cancers.

Funder

Maria Curie Sklodowska University

Medical University of Lublin

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3