RSIn-Dataset: An UAV-Based Insulator Detection Aerial Images Dataset and Benchmark

Author:

Shuang Feng1,Han Sheng1,Li Yong12ORCID,Lu Tongwei12ORCID

Affiliation:

1. Guangxi Key Laboratory of Intelligent Control and Maintenance of Power Equipment, School of Electrical Engineering, Guangxi University, Nanning 530004, China

2. Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430205, China

Abstract

Power line inspection is an important part of the smart grid. Efficient real-time detection of power devices on the power line is a challenging problem for power line inspection. In recent years, deep learning methods have achieved remarkable results in image classification and object detection. However, in the power line inspection based on computer vision, datasets have a significant impact on deep learning. The lack of public high-quality power scene data hinders the application of deep learning. To address this problem, we built a dataset for power line inspection scenes, named RSIn-Dataset. RSIn-Dataset contains 4 categories and 1887 images, with abundant backgrounds. Then, we used mainstream object detection methods to build a benchmark, providing reference for insulator detection. In addition, to address the problem of detection inefficiency caused by large model parameters, an improved YoloV4 is proposed, named YoloV4++. It uses a lightweight network, i.e., MobileNetv1, as the backbone, and employs the depthwise separable convolution to replace the standard convolution. Meanwhile, the focal loss is implemented in the loss function to solve the impact of sample imbalance. The experimental results show the effectiveness of YoloV4++. The mAP and FPS can reach 94.24% and 53.82 FPS, respectively.

Funder

Guangxi Science and Technology Base and Talent Project

Natural Science Foundation of Guangxi

Hubei Key Laboratory of Intelligent Robot

Research Basic Ability Improvement Project of Young and Middle-aged Teachers in Guangxi Universities

Bagui Scholars Project

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3