Extraction and Mapping of Cropland Parcels in Typical Regions of Southern China Using Unmanned Aerial Vehicle Multispectral Images and Deep Learning

Author:

Wu Shikun1,Su Yingyue1,Lu Xiaojun1,Xu Han1,Kang Shanggui1,Zhang Boyu1,Hu Yueming2,Liu Luo1

Affiliation:

1. Guangdong Provincial Key Laboratory of Land Use and Consolidation, South China Agricultural University, Guangzhou 510642, China

2. College of Tropical Crops, Hainan University, Haikou 570100, China

Abstract

The accurate extraction of cropland distribution is an important issue for precision agriculture and food security worldwide. The complex characteristics in southern China pose great challenges to the extraction. In this study, for the objective of accurate extraction and mapping of cropland parcels in multiple crop growth stages in southern China, we explored a method based on unmanned aerial vehicle (UAV) data and deep learning algorithms. Our method considered cropland size, cultivation patterns, spectral characteristics, and the terrain of the study area. From two aspects—model architecture of deep learning and the data form of UAV—four groups of experiments are performed to explore the optimal method for the extraction of cropland parcels in southern China. The optimal result obtained in October 2021 demonstrated an overall accuracy (OA) of 95.9%, a Kappa coefficient of 89.2%, and an Intersection-over-Union (IoU) of 95.7%. The optimal method also showed remarkable results in the maps of cropland distribution in multiple crop growth stages, with an average OA of 96.9%, an average Kappa coefficient of 89.5%, and an average IoU of 96.7% in August, November, and December of the same year. This study provides a valuable reference for the extraction of cropland parcels in multiple crop growth stages in southern China or regions with similar characteristics.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3