Digital Self-Interference Cancellation for Full-Duplex UAV Communication System over Time-Varying Channels

Author:

Tian Lu1,Shi Chenrui1,Xu Zhan1

Affiliation:

1. Key Laboratory of Modern Measurement and Control Technology, Ministry of Education, Beijing Information Science and Technology University, Beijing 100101, China

Abstract

Full-duplex unmanned aerial vehicle (UAV) communication systems are characterized by mobility, so the self-interference (SI) channel characteristics change over time constantly. In full-duplex UAV communication systems, the difficulty is to eliminate SI in time-varying channels. In this paper, we propose a pilot-aid digital self-interference cancellation (SIC) method. First, the pilot is inserted into the data sequence uniformly, and the time-varying SI is modeled as a linear non-causal function. Then, the time-varying SI channel is estimated by the discrete prolate spheroidal basis expansion model (BEM). The error of block edge channel estimation is reduced by cross-block interpolation. The result of channel estimation is convolved with the transmitted data to obtain the reconstructed SI, which is subtracted from the received signal to achieve SIC. The simulation results show that the SIC performance of the proposed method outperforms the dichotomous coordinate descent recursive least square (DCD-RLS) and normalized least mean square (NLMS) algorithms. When the interference to noise ratio (INR) is 25 dB, the performance index normalized least mean square (NMSE) is reduced by 5.5 dB and 4 dB compared with DCD-RLS and NLMS algorithms, which can eliminate SI to the noise floor, and the advantage becomes more obvious as the INR increases.

Funder

National Natural Science Foundation of China

Science and Technology Project of the Beijing Municipal Education Commission

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3