Study on Multi-UAV Cooperative Path Planning for Complex Patrol Tasks in Large Cities

Author:

Xiang Hongyu1ORCID,Han Yuhang1,Pan Nan1ORCID,Zhang Miaohan1,Wang Zhenwei1

Affiliation:

1. Faculty of Civil Aviation and Aeronautical, Kunming University of Science and Technology, Kunming 650500, China

Abstract

Unmanned Aerial Vehicles (UAVs) are increasingly utilized for urban patrol and defense owing to their low cost, high mobility, and rapid deployment. This paper proposes a multi-UAV mission planning model that takes into account mission execution rates, flight energy consumption costs, and impact costs. A kinematics and dynamics model of a quadcopter UAV is established, and the UAV’s flight state is analyzed. Due to the difficulties in addressing 3D UAV kinematic constraints and poor uniformity using traditional optimization algorithms, a lightning search algorithm (LSA) based on multi-layer nesting and random walk strategies (MNRW-LSA) is proposed. The convergence performance of the MNRW-LSA algorithm is demonstrated by comparing it with several other algorithms, such as the Golden Jackal Optimization (GJO), Hunter–Prey Optimization (HPO), Pelican Optimization Algorithm (POA), Reptile Search Algorithm (RSA), and the Golden Eagle Optimization (GEO) using optimization test functions, Friedman and Nemenyi tests. Additionally, a greedy strategy is added to the Rapidly-Exploring Random Tree (RRT) algorithm to initialize the trajectories for simulation experiments using a 3D city model. The results indicate that the proposed algorithm can enhance global convergence and robustness, shorten convergence time, improve UAV execution coverage, and reduce energy consumption. Compared with other algorithms, such as Particle Swarm Optimization (PSO), Simulated Annealing (SA), and LSA, the proposed method has greater advantages in addressing multi-UAV trajectory planning problems.

Funder

China Southern Power Grid

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3