Color Light Metallography Versus Electron Microscopy for Detecting and Estimating Various Phases in a High-Strength Multiphase Steel

Author:

Pashangeh ShimaORCID,Ghasemi Banadkouki Seyyed SadeghORCID,Besharati FatemehORCID,Mehrabi Fatemeh,Somani MaheshORCID,Kömi Jukka

Abstract

In this study, fresh attempts have been made to identify and estimate the phase constituents of a high-silicon, medium carbon multiphase steel (DIN 1.5025 grade) subjected to austenitization at 900 °C for 5 min, followed by quenching and low-temperature bainitizing (Q&B) at 350 °C for 200 s. Several techniques were employed using different chemical etching reagents either individually (single-step) or in combination of two or more etchants in succession (multiple-step) for conducting color metallography. The results showed that the complex multiphase microstructures comprising a fine mixture of bainite, martensite and retained austenite phase constituents were selectivity stained/tinted with good contrasting resolution, as observed via conventional light optical microscopy observations. While the carbon-enriched martensite-retained austenite (M/RA) islands were revealed as cream-colored areas by using a double-step etching technique comprising etching with 10% ammonium persulfate followed by etching with Marble’s reagent, the dark gray-colored bainite packets were easily distinguishable from the brown-colored martensite regions. However, the high-carbon martensite and retained austenite in M/RA islands could be differentiated only after resorting to a triple-step etching technique comprising etching in succession with 2% nital, 10% ammonium persulfate solution and then warm Marble’s reagent at 30 °C. This revealed orange-colored martensite in contrast to cream-colored retained austenite in M/RA constituents, besides the presence of brown-colored martensite laths in the dark gray-colored bainitic matrix. A quadruple-step technique involving successive etching with 2% nital, 10% ammonium persulfate solution, Marble’s reagent and finally Klemm’s Ι reagent at 40 °C revealed even better contrast in comparison to the triple-step etching technique, particularly in distinguishing the RA from martensite. Observations using advanced techniques like field emission scanning electron microscopy (FE-SEM) and electron back scatter diffraction (EBSD) failed to differentiate untempered, high-carbon martensite from retained austenite in the M/RA islands and martensite laths from bainitic matrix, respectively. Transmission electron microscopy (TEM) studies successfully distinguished the RA from high-carbon martensite, as noticed in M/RA islands. The volume fraction of retained austenite estimated by EBSD, XRD and a point counting method on color micrographs of quadruple-step etched samples showed good agreement.

Funder

Genome of Steel (Profi3) by the Academy of Finland

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3